Optical influence of oil droplets on cone photoreceptor sensitivity

نویسندگان

  • David Wilby
  • Nicholas W Roberts
چکیده

Oil droplets are spherical organelles found in the cone photoreceptors of vertebrates. They are generally assumed to focus incident light into the outer segment, and thereby improve light catch because of the droplets' spherical lens-like shape. However, using full-wave optical simulations of physiologically realistic cone photoreceptors from birds, frogs and turtles, we find that pigmented oil droplets actually drastically reduce the transmission of light into the outer segment integrated across the full visible wavelength range of each species. Only transparent oil droplets improve light catch into the outer segments, and any enhancement is critically dependent on the refractive index, diameter of the oil droplet, and diameter and length of the outer segment. Furthermore, oil droplets are not the only optical elements found in cone inner segments. The ellipsoid, a dense aggregation of mitochondria situated immediately prior to the oil droplet, mitigates the loss of light at the oil droplet surface. We describe a framework for integrating these optical phenomena into simple models of receptor sensitivity, and the relevance of these observations to evolutionary appearance and loss of oil droplets is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optics of cone photoreceptors in the chicken (Gallus gallus domesticus)

Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondria...

متن کامل

Evolution, Development and Function of Vertebrate Cone Oil Droplets

To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a uni...

متن کامل

Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity.

The cone photoreceptors of many vertebrates contain spherical organelles called oil droplets. In birds, turtles, lizards and some lungfish the oil droplets are heavily pigmented and function to filter the spectrum of light incident upon the visual pigment within the outer segment. Pigmented oil droplets are beneficial for colour discrimination in bright light, but at lower light levels the redu...

متن کامل

Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo)

A microspectrophotometric survey conducted on the retinal photoreceptors of the domestic turkey (Meleagris gallopavo) revealed the presence of five different types of vitamin A1-based visual pigment (rhodopsin) in seven different types of photoreceptor. A single class of rod contained a medium wavelength-sensitive visual pigment (wavelength of maximum absorbance, lambda max, 504 nm). Four diffe...

متن کامل

Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models

Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values mus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 220  شماره 

صفحات  -

تاریخ انتشار 2017